
bugs-everywhere Documentation
Release v2.0.0-rc2 (unknown)

W. Trevor King

Jan 06, 2018

Contents

1 Installing BE 3
1.1 Distribution packages . 3
1.2 Dependencies . 3
1.3 Git repository . 3
1.4 Release tarballs . 4

2 Tutorial 7
2.1 Introduction . 7
2.2 Installation . 7
2.3 Bugs . 7
2.4 Command-line interface . 8

3 Configuration 15
3.1 Config file format and location . 15
3.2 Settings . 15

4 Email Interface 17
4.1 Overview . 17
4.2 Architecture . 17
4.3 Creating bugs . 17
4.4 Commenting on bugs . 18
4.5 Controlling bugs . 18
4.6 Example emails . 19
4.7 Procmail rules . 19
4.8 Testing . 19

5 HTTP Interface 21

6 Distributed Bugtracking 23
6.1 Usage Cases . 23
6.2 Notes . 24

7 Power features 25
7.1 Autocompletion . 25
7.2 XML-handling utilities . 25

8 Hacking BE 27

i

8.1 Adding commands . 27
8.2 Adding user interfaces . 27
8.3 Testing . 27
8.4 Profiling . 28

9 Data Format 29
9.1 Bugdir . 29
9.2 Bug . 29
9.3 Comment . 30

10 Dealing with spam 31
10.1 If the offending commit is the last commit . 31
10.2 If the offending commit is not the last commit . 31
10.3 Warnings about changing history . 31

11 Producing this documentation 33
11.1 Man page . 33

12 Indices and tables 35

ii

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

Bugs Everywhere (BE) is a bugtracker built on distributed version control. It works with Bazaar, Darcs, Git, and
Mercurial at the moment, but is easily extensible. It can also function with no VCS at all.

The idea is to package the bug information with the source code, so that bugs can be marked “fixed” in the branches
that fix them. Other architectures—such as keeping all the bugs in their own branch—are also possible.

Contents:

Contents 1

http://bazaar.canonical.com/
http://darcs.net/
http://git-scm.com/
http://mercurial.selenic.com/

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

2 Contents

CHAPTER 1

Installing BE

1.1 Distribution packages

Some distributions (Debian , Ubuntu , others?) package an old version of BE. If you’re running one of those dis-
tributions, you can install the package with your regular package manager. For Debian, Ubuntu, and related distros,
that’s:

$ apt-get install bugs-everywhere

While, the official packages are not based on this fork, they are compatible.

1.2 Dependencies

Not all of these dependencies are strictly required. See Minimal installs for possible shortcuts.

Package Role Debian
Gentoo_

Jinja HTML templating python-jinja2 dev-python/jinja
CherryPy serve repos over HTTPS python-cherrypy3 dev-python/cherrypy
Sphinx see Producing this documentation python-sphinx dev-python/sphinx
numpydoc see Producing this documentation python-numpydoc dev-python/numpydoc
Docutils manpage generation python-docutils dev-python/docutils

1.3 Git repository

BE is available as a Git repository:

$ git clone https://gitlab.com/bugseverywhere/bugseverywhere.git be

3

https://packages.debian.org/stretch/bugs-everywhere
https://packages.ubuntu.com/zesty/bugs-everywhere
https://packages.debian.org/stretch/bugs-everywhere
http://jinja.pocoo.org/
http://cherrypy.org/
http://sphinx.pocoo.org/
http://pypi.python.org/pypi/numpydoc
http://docutils.sourceforge.net/

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

See the homepage for details. If you do branch the Git repo, you’ll need to run:

$ make

to build some auto-generated files (e.g. libbe._version), and:

$ make install

to install BE. By default BE will install into your home directory, but you can tweak the INSTALL_OPTIONS variable
in Makefile to install to another location. With the default installation, you may need to add ~/.local/bin/ to
your PATH so that your shell can find the installed be script.

1.3.1 Minimal installs

By default, make builds both a man page for be and the HTML Sphinx documentation (Producing this documenta-
tion). You can customize the documentation targets (if, for example, you don’t want to install Sphinx) by overriding
the DOC variable. For example, to disable all documentation during a build/install, run:

$ make DOC= install

Note that setup.py (called during make install) will install the man page (doc/man/be.1) if it exists, so:

$ make
$ make DOC= install

will build (first make) and install (second make) the man page.

Also note that there is no need to edit the Makefile to change any of its internal variables. You can override them
from the command line, as we did for DOC above.

Finally, if you want to do the absolute minimum required to install BE locally, you can skip the Makefile entirely,
and just use setup.py directly:

$ python setup.py install

See:

$ python setup.py install --help

for a list of installation options.

Jinja is only used by the html command, so there’s no need to install Jinja if you don’t mind avoiding that command.
Similarly, CherryPy is only used for the html and serve-* commands with the --ssl option set. The other
dependencies are only used for building these docs, so feel free to skip them and just use the docs wherever you’re
currently reading them.

1.4 Release tarballs

For those not interested in the development version, or those who don’t want to worry about installing Git, we’ll post
release tarballs. After you’ve downloaded the release tarball, unpack it with:

$ tar -xzvf be-<VERSION>.tar.gz

And install it with::

4 Chapter 1. Installing BE

http://bugseverywhere.org/
http://www.gnu.org/software/make/manual/html_node/Overriding.html
http://www.gnu.org/software/make/manual/html_node/Overriding.html
http://www.gnu.org/software/make/manual/html_node/Overriding.html
https://github.com/kalkin/be/releases
https://github.com/kalkin/be/releases

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

$ cd be-<VERSION>
$ make install

1.4. Release tarballs 5

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

6 Chapter 1. Installing BE

CHAPTER 2

Tutorial

2.1 Introduction

Bugs Everywhere (BE) is a bugtracker built on distributed revision control. The idea is to package the bug information
with the source code, so that developers working on the code can make appropriate changes to the bug repository as
they go. For example, by marking a bug as “fixed” and applying the fixing changes in the same commit. This makes
it easy to see what’s been going on in a particular branch and helps keep the bug repository in sync with the code.

However, there are some differences compared to centralized bugtrackers. Because bugs and comments can be created
by several users in parallel, they have globally unique IDs rather than numbers. There is also a developer-friendly
command-line interface to compliment the user-friendly web and email interfaces. This tutorial will focus on the
command-line interface as the most powerful, and leave the web and email interfaces to other documents.

2.2 Installation

If your distribution packages BE, it will be easiest to use their package. For example, most Debian-based distributions
support:

$ apt-get install bugs-everywhere

See the install page for more information and alternative methods.

2.3 Bugs

If you have any problems with BE, you can look for matching bugs:

$ be --repo http://bugs.bugseverywhere.org/ list

If your bug isn’t listed, please open a new bug:

7

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

$ be --repo http://bugs.bugseverywhere.org/ new 'bug'
Created bug with ID bea/abc
$ be --repo http://bugs.bugseverywhere.org/ comment bea/def
<editor spawned for comments>

2.4 Command-line interface

2.4.1 Help

All of the following information elaborates on the command help text, which is stored in the code itself, and therefore
more likely to be up to date. You can get a list of commands and topics with:

$ be help

Or see specific help on COMMAND with

$ be help COMMAND

for example:

$ be help init

will give help on the init command.

2.4.2 Initialization

You’re happily coding in your Bazaar / Darcs / Git / Mercurial versioned project and you discover a bug. You think,
“Hmm, I’ll need a simple way to track these things”. This is where BE comes in. One of the benefits of distributed
versioning systems is the ease of repository creation, and BE follows this trend. Just type:

$ be init
Using <VCS> for revision control.
BE repository initialized.

in your project’s root directory. This will create a .be directory containing the bug repository and notify your VCS
so it will be versioned starting with your next commit. See:

$ be help init

for specific details about where the .be directory will end up if you call it from a directory besides your project’s root.

Inside the .be directory (among other things) there will be a long UUID directory. This is your bug di-
rectory. The idea is that you could keep several bug directories in the same repository, using one to track
bugs, another to track roadmap issues, etc. See IDs for details. For BE itself, the bug directory is
bea86499-824e-4e77-b085-2d581fa9ccab, which is why all the bug and comment IDs in this tutorial will
start with bea/.

2.4.3 Creating bugs

Create new bugs with:

8 Chapter 2. Tutorial

http://bazaar.canonical.com/
http://darcs.net/
http://git-scm.com/
http://mercurial.selenic.com/
http://en.wikipedia.org/wiki/Universally_Unique_Identifier

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

$ be new <SUMMARY>

For example:

$ be new 'Missing demuxalizer functionality'
Created bug with ID bea/28f

If you are entering a bug reported by another person, take advantage of the --reporter option to give them credit:

$ be new --reporter 'John Doe <jdoe@example.com>' 'Missing whatsit...'
Created bug with ID bea/81a

See be help new for more details.

While the bug summary should include the appropriate keywords, it should also be brief. Unlike other bug trackers,
the bug itself cannot contain a multi-line description. So you should probably add a comment immediately giving a
more elaborate explanation of the problem so that the developer understands what you want and when the bug can be
considered fixed.

2.4.4 Commenting on bugs

Bugs are like little mailing lists, and you can comment on the bug itself or previous comments, attach files, etc. For
example:

$ be comment abc/28f "Thoughts about demuxalizers..."
Created comment with ID abc/28f/97a
$ be comment abc/def/012 "Oops, I forgot to mention..."
Created comment with ID abc/28f/e88

Usually comments will be long enough that you’ll want to compose them in a text editor, not on the command line
itself. Running be comment without providing a COMMENT argument will try to spawn an editor automatically
(using your environment’s VISUAL or EDITOR, see Guide to Unix, Environmental Variables).

You can also pipe the comment body in on stdin, which is especially useful for binary attachments, etc.:

$ cat screenshot.png | be comment --content-type image/png bea/28f -
Created comment with ID bea/28f/35d

It’s polite to insert binary attachments under comments that explain the content and why you’re attaching it, so the
above should have been:

$ be comment bea/28f "Whosit dissapears when you mouse-over whatsit."
Created comment with ID bea/28f/41d
$ cat screenshot.png | be comment --content-type image/png bea/28f/41d -
Created comment with ID bea/28f/35d

For more details, see be help comment.

2.4.5 Showing bugs

Ok, you understand how to enter bugs, but how do you get that information back out? If you know the ID of the item
you’re interested in (e.g. bug bea/28f), try:

2.4. Command-line interface 9

http://en.wikibooks.org/wiki/Guide_to_Unix/Environment_Variables

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

$ be show bea/28f
ID : 28fb711c-5124-4128-88fe-a88a995fc519

Short name : bea/28f
Severity : minor

Status : open
Assigned :
Reporter :
Creator : ...
Created : ...

Missing demuxalizer functionality
--------- Comment ---------
Name: bea/28f/97a
From: ...
Date: ...

Thoughts about demuxalizers...
--------- Comment ---------
Name: bea/28f/e88
From: ...
Date: ...

Thoughts about demuxalizers...
--------- Comment ---------
Name: bea/28f/41d
From: ...
Date: ...

Whosit dissapears when you mouse-over whatsit.
--------- Comment ---------
Name: bea/28f/35d
From: ...
Date: ...

Content type image/png not printable. Try XML output instead

You can also get a single comment body, which is useful for extracting binary attachments:

$ be show --only-raw-body bea/28f/35d > screenshot.png

There is also an XML output format, which can be useful for emailing entries around, scripting BE, etc.:

$ be show --xml bea/35d
<?xml version="1.0" encoding="UTF-8" ?>
<be-xml>
...

2.4.6 Listing bugs

If you don’t know which bug you’re interested in, you can query the whole bug directory:

$ be list
bea/28f:om: Missing demuxalizer functionality
bea/81a:om: Missing whatsit...

There are a whole slew of options for filtering the list of bugs. See be help list for details.

10 Chapter 2. Tutorial

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

2.4.7 Showing changes

Often you will want to see what’s going on in another dev’s branch or remind yourself what you’ve been working
on recently. All VCSs have some sort of diff command that shows what’s changed since revision XYZ. BE has its
own command that formats the bug-repository portion of those changes in an easy-to-understand summary format. To
compare your working tree with the last commit:

$ be diff
New bugs:

bea/01c:om: Need command output abstraction for flexible UIs
Modified bugs:

bea/343:om: Attach tests to bugs
Changed bug settings:

creator: None -> W. Trevor King <wking@drexel.edu>

Compare with a previous revision 1.1.0:

$ be diff 1.1.0
...

The format of revision names passed to diff will depend on your VCS. For Git, look to gitrevisions for inspiration.

Compare your BE branch with the trunk:

$ be diff --repo http://bugs.bugseverywhere.org/

2.4.8 Manipulating bugs

There are several commands that allow to to set bug properties. They are all fairly straightforward, so we will merely
point them out here, and refer you to be help COMMAND for more details.

• assign, Assign an individual or group to fix a bug

• depend, Add/remove bug dependencies

• due, Set bug due dates

• status, Change a bug’s status level

• severity, Change a bug’s severity level

• tag, Tag a bug, or search bugs for tags

• target, Assorted bug target manipulations and queries

You can also remove bugs you feel are no longer useful with be remove, and merge duplicate bugs with be merge.

2.4.9 Subscriptions

Since BE bugs act as mini mailing lists, we provide be subscribe as a way to manage change notification. You
can subscribe to all the changes with:

$ be subscribe --types all DIR

Subscribe only to bug creaton on bugseverywhere.org with:

$ be subscribe --server bugseverywhere.org --types new DIR

2.4. Command-line interface 11

http://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

Subscribe to get all the details about bug bea/28f:

$ be subscribe --types new bea/28f

To unsubscribe, simply repeat the subscription command adding the --unsubscribe option, but be aware that it
may take some time for these changes to propogate between distributed repositories. If you don’t feel confident in
your ability to filter email, it’s best to only subscribe to the repository for which you have direct write access.

2.4.10 Managing bug directories

be set lets you configure a bug directory. You can set

• active_status The allowed active bug states and their descriptions.

• inactive_status The allowed inactive bug states and their descriptions.

• severities The allowed bug severities and their descriptions.

• target The current project development target (bug UUID).

• extra_strings Space for an array of extra strings. You usually won’t bother with this directly.

For example, to set the current target to ‘1.2.3’:

$ be set target $(be target --resolve '1.2.3')

2.4.11 Import XML

For serializing bug information (e.g. to email to a mailing list), use:

$ be show --xml bea/28f > bug.xml

This information can be imported into (another) bug directory via

$ be import-xml bug.xml

Also distributed with BE are some utilities to convert mailboxes into BE-XML (be-mail-to-xml) and convert
BE-XML into mbox format for reading in your mail client.

2.4.12 Export HTML

To create a static dump of your bug directory, use:

$ be html

This is a fairly flexible command, see be help html for details. It works pretty well as the browsable part of a
public interface using the Email Interface for interactive access.

2.4.13 BE over HTTP

Besides using BE to work directly with local VCS-based repositories, you can use:

$ be serve-storage

To serve a repository over HTTP. For example:

12 Chapter 2. Tutorial

http://en.wikipedia.org/wiki/Mbox

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

$ be serve-storage > server.log 2>&1 &
$ be --repo http://localhost:8000 list

Of course, be careful about serving over insecure networks, since malicous users could fill your disk with endless
bugs, etc. You can disabled write access by using the --read-only option, which would make serving on a public
network safer.

Serving the storage interface is flexible, but it can be inefficient. For example, a call to be list against a remote
backend requires all bug information to be transfered over the wire. As a faster alternative, you may want to serve
your repository at the command level:

$ be serve-commands > server.log 2>&1 &
$ be --server http://localhost:8000 list

Take a look at the server logs to get a feel for the bandwidth you’re saving! Serving commands over insecure networks
is at least as dangerous as serving storage. Take appropriate precautions for your network.

2.4.14 Driving the VCS through BE

Since BE uses internal storage drivers for its various backends, it seemed useful to provide a uniform interface to some
of the common functionality. These commands are not intended to replace the usually much more powerful native
VCS commands, but to provide an easy means of simple VCS-agnostic scripting for BE user interfaces, etc.

Commit

Currently, we only expose be commit, which commits all currently pending changes.

2.4. Command-line interface 13

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

14 Chapter 2. Tutorial

CHAPTER 3

Configuration

3.1 Config file format and location

Most of the information that BE needs lives in the bug repository itself, but there is user-specific information that does
not fit into a shared repository. This per-user configuration information is stored in an INI-style config file:

[default]
user = 'John Doe <jdoe@example.com>'

The config file is located at ~/.config/bugs-everywhere by default, but you can override the path by setting
environment variables (see path() for details).

3.2 Settings

Currently the only information stored in the configuration file is a user ID (see get_user_id()), as shown in the
example above. However, many version control systems allow you to specify your name and email address, and BE
will fall back to the VCS-configured values, so you probably don’t need to set a BE-specific configuration.

15

http://docs.python.org/library/configparser.html

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

16 Chapter 3. Configuration

CHAPTER 4

Email Interface

4.1 Overview

The interactive email interface to Bugs Everywhere (BE) attempts to provide a Debian-bug-tracking-system-style
interface to a BE repository. Users can mail in bug reports, comments, or control requests, which will be committed to
the served repository. Developers can then pull the changes they approve of from the served repository into their other
repositories and push updates back onto the served repository.

4.2 Architecture

In order to reduce setup costs, the entire interface can piggyback on an existing email address, although from a security
standpoint it’s probably best to create a dedicated user. Incoming email is filtered by procmail, with matching emails
being piped into be-handle-mail for execution.

Once be-handle-mail receives the email, the parsing method is selected according to the subject tag that procmail
used grab the email in the first place. There are four parsing styles:

Style Subject
creating bugs [be-bug:submit] new bug summary
commenting on bugs [be-bug:<bug-id>] commit message
control [be-bug] commit message

These are analogous to submit@bugs.debian.org, nnn@bugs.debian.org, and control@bugs.
debian.org respectively.

4.3 Creating bugs

This interface creates a bug whose summary is given by the email’s post-tag subject. The body of the email must
begin with a pseudo-header containing at least the Version field. Anything after the pseudo-header and before a line

17

http://www.debian.org/Bugs

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

starting with -- is, if present, attached as the bug’s first comment.:

From jdoe@example.com Fri Apr 18 12:00:00 2008
From: John Doe <jdoe@example.com>
Date: Fri, 18 Apr 2008 12:00:00 +0000
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Subject: [be-bug:submit] Need tests for the email interface.

Version: XYZ
Severity: minor

Someone should write up a series of test emails to send into
be-handle-mail so we can test changes quickly without having to
use procmail.

--
Goofy tagline not included.

Available pseudo-headers are Version, Reporter, Assign, Depend, Severity, Status, Tag, and Target.

4.4 Commenting on bugs

This interface appends a comment to the bug specified in the subject tag. The the first non-multipart body is attached
with the appropriate content-type. In the case of text/plain contents, anything following a line starting with --
is stripped.:

From jdoe@example.com Fri Apr 18 12:00:00 2008
From: John Doe <jdoe@example.com>
Date: Fri, 18 Apr 2008 12:00:00 +0000
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Subject: [be-bug:XYZ] Isolated problem in baz()

Finally tracked it down to the bar() call. Some sort of
string<->unicode conversion problem. Solution ideas?

--
Goofy tagline not included.

4.5 Controlling bugs

This interface consists of a list of allowed be commands, with one command per line. Blank lines and lines beginning
with # are ignored, as well anything following a line starting with --. All the listed commands are executed in order
and their output returned. The commands are split into arguments with the POSIX-compliant shlex.split().:

From jdoe@example.com Fri Apr 18 12:00:00 2008
From: John Doe <jdoe@example.com>
Date: Fri, 18 Apr 2008 12:00:00 +0000
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Subject: [be-bug] I'll handle XYZ by release 1.2.3

18 Chapter 4. Email Interface

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

assign XYZ "John Doe <jdoe@example.com>"
status XYZ assigned
severity XYZ critical
target XYZ 1.2.3

--
Goofy tagline ignored.

4.6 Example emails

Take a look at interfaces/email/interactive/examples for some more examples.

4.7 Procmail rules

The file _procmailrc as it stands is fairly appropriate for as a dedicated user’s ~/.procmailrc. It forwards
matching mail to be-handle-mail, which should be installed somewhere in the user’s path. All non-matching
mail is dumped into /dev/null. Everything procmail does will be logged to ~/be-mail/procmail.log.

If you’re piggybacking the interface on top of an existing account, you probably only need to add the
be-handle-mail stanza to your existing ~/.procmailrc, since you will still want to receive non-bug emails.

Note that you will probably have to add a:

--repo /path/to/served/repository

option to the be-handle-mail invocation so it knows what repository to serve.

Multiple repositories may be served by the same email address by adding multiple be-handle-mail stan-
zas, each matching a different tag, for example the [be-bug portion of the stanza could be [projectX-bug,
[projectY-bug, etc. If you change the base tag, be sure to add a:

--tag-base "projectX-bug"

or equivalent to your be-handle-mail invocation.

4.8 Testing

Send test emails in to be-handle-mail with something like:

cat examples/blank | ./be-handle-mail -o -l - -a

4.6. Example emails 19

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

20 Chapter 4. Email Interface

CHAPTER 5

HTTP Interface

BE bundles Cherry-flavored BE, an interactive HTML interface originally developed by Steve Losh.

You can run it from the BE source directory with:

$ python interfaces/web/cfbe.py PATH_TO_REPO

Eventually we’ll move it into libbe.ui so it will be installed automatically with every BE installation.

21

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

22 Chapter 5. HTTP Interface

CHAPTER 6

Distributed Bugtracking

6.1 Usage Cases

6.1.1 Case 1: Tracking the status of bugs in remote repo branches

See the discussion in #bea86499-824e-4e77-b085-2d581fa9ccab/12c986be-d19a-4b8b-b1b5-68248ff4d331#. Here, it
doesn’t matter whether the remote repository is a branch of the local repository, or a completely separate project (e.g.
upstream, . . .). So long as the remote project provides access via some REPO format, you can use:

$ be --repo REPO ...

to run your query, or:

$ be diff REPO

to see the changes between the local and remote repositories.

6.1.2 Case 2: Importing bugs from other repositories

Case 2.1: If the remote repository is a branch of the local repository:

$ <VCS> merge <REPO>

Case 2.2: If the remote repository is not a branch of the local repository (Hypothetical command):

$ be import <REPO> <ID>

23

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

6.2 Notes

6.2.1 Providing public repositories

e.g. for non-dev users. These are just branches that expose a public interface (HTML, email, . . .). Merge and query
like any other development branch.

6.2.2 Managing permissions

Many bugtrackers implement some sort of permissions system, and they are certainly required for a central system with
diverse user roles. However DVCSs also support the “pull my changes” workflow, where permissions are irrelevant.

24 Chapter 6. Distributed Bugtracking

CHAPTER 7

Power features

BE comes with a number of additional utilities and features that may be useful to power users. We’ll try to keep an up
to date list here, but your best bet may be poking around in the source on your own.

7.1 Autocompletion

misc/completion contains completion scripts for common shells (if we don’t have a completion script for your
favorite shell, submit one!). Basic instructions for installing the completion file for a given shell should be given in the
completion script comments.

Packagers should install these completion scripts in their system’s usual spot (on Gentoo, the Bash completion script
should be installed as /usr/share/bash_completion/be and Z shell completion script should be installed as
/usr/share/zsh/site-functions/_be).

7.2 XML-handling utilities

Email threads are quite similar to the bugs/issues that BE tracks. There are a number of useful scripts in misc/xml
to go back and forth between the two formats using BE’s XML format. The commands should be well documented.
Use the usual <command> --help for more details on a given command.

25

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

26 Chapter 7. Power features

CHAPTER 8

Hacking BE

8.1 Adding commands

To write a plugin, you simply create a new file in the libbe/command/ directory. Take a look at one of the simpler
plugins (e.g. libbe.command.remove) for an example of how that looks, and to start getting a feel for the libbe
interface.

See libbe.command.base for the definition of the important classes Option, Argument, Command,
InputOutput, StorageCallbacks, and UserInterface. You’ll be subclassing Command for your com-
mand, but all those classes will be important.

8.1.1 Command completion

BE implements a general framework to make it easy to support command completion for arbitrary plugins. In order
to support this system, any of your completable Argument instances (in your command’s .options or .args)
should be initialized with some valid completion_callback function. Some common cases are defined in libbe.
command.util. If you need more flexibility, see libbe.command.list’s --sort option for an example of
extensions via libbe.command.util.Completer, or write a custom completion function from scratch.

8.2 Adding user interfaces

Take a look at libbe.ui.command_line for an example. Basically you’ll need to setup a UserInterface
instance for running commands. More details to come after I write an HTML UI. . .

8.3 Testing

Run any tests in your module with:

27

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

be$ python test.py <python.module.name>

for example:

be$ python test.py libbe.command.merge

For a definition of “any tests”, see test.py’s add_module_tests() function.

Note that you will need to run make before testing a clean BE branch to auto-generate required files like libbe/
_version.py.

8.4 Profiling

Find out which 20 calls take the most cumulative time (time of execution + childrens’ times):

$ python -m cProfile -o profile be [command] [args]
$ python -c "import pstats; p=pstats.Stats('profile'); p.sort_stats('cumulative').
→˓print_stats(20)"

If you want to find out who’s calling your expensive function (e.g. libbe.util.subproc.invoke()), try:

$ python -c "import pstats; p=pstats.Stats('profile'); p.sort_stats('cumulative').
→˓print_callers(20)"

You can also toss:

import sys, traceback
print >> sys.stderr, '-'*60, '\n', '\n'.join(traceback.format_stack()[-10:])

into the function itself for a depth-first caller list.

For a more top-down approach, try:

$ python -c "import pstats; p=pstats.Stats('profile'); p.sort_stats('cumulative').
→˓print_callees(20)"

28 Chapter 8. Hacking BE

CHAPTER 9

Data Format

9.1 Bugdir

target The current project development target.

severities The allowed bug severities and their descriptions.

active_status The allowed active bug states and their descriptions.

inactive_status The allowed inactive bug states and their descriptions.

extra_strings Space for an array of extra strings. Useful for storing state for functionality implemented purely in
becommands/<some_function>.py.

9.2 Bug

severity A measure of the bug’s importance

status The bug’s current status

creator The user who entered the bug into the system

reporter The user who reported the bug

time An RFC 2822 timestamp for bug creation

extra_strings Space for an array of extra strings. Useful for storing state for functionality implemented purely in
becommands/<some_function>.py.

comment_root The trunk of the comment tree. We use a dummy root comment by default, because there can be
several comment threads rooted on the same parent bug. To simplify comment interaction, we condense these
threads into a single thread with a Comment dummy root.

29

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

9.3 Comment

Alt-Id Alternate ID for linking imported comments. Internally comments are linked (via In-reply-to) to the parent’s
UUID. However, these UUIDs are generated internally, so Alt-id is provided as a user-controlled linking target.

Author The author of the comment

In-reply-to UUID for parent comment or bug

Content-type Mime type for comment body

Date An RFC 2822 timestamp for comment creation

body The meat of the comment

extra_strings Space for an array of extra strings. Useful for storing state for functionality implemented purely in
becommands/<some_function>.py.

vim: ft=rst

30 Chapter 9. Data Format

CHAPTER 10

Dealing with spam

In the case that some spam or inappropriate comment makes its way through you interface, you can (sometimes)
remove the offending commit XYZ.

10.1 If the offending commit is the last commit

bzr bzr uncommit && bzr revert
darcs darcs obliterate –last=1
git git reset –hard HEAD^
hg hg rollback && hg revert

10.2 If the offending commit is not the last commit

bzr1 bzr rebase -r <XYZ+1>..-1 –onto before:XYZ .
darcs darcs obliterate –matches ‘name XYZ’
git git rebase –onto XYZ~1 XYZ
hg2

10.3 Warnings about changing history

Note that all of these change the repo history , so only do this on your interface-specific repo before it interacts with
any other repo. Otherwise, you’ll have to survive by cherry-picking only the good commits.

1 Requires the `bzr-rebase plugin‘_. Note, you have to increment XYZ by hand for <XYZ+1>, because bzr does not support after:XYZ.
2 From Mercurial, The Definitive Guide:

“Mercurial also does not provide a way to make a file or changeset completely disappear from history, because there is no way to enforce its
disappearance”

31

http://hgbook.red-bean.com/read/finding-and-fixing-mistakes.html#id394667

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

32 Chapter 10. Dealing with spam

CHAPTER 11

Producing this documentation

This documentation is written in reStructuredText, and produced using Sphinx and the numpydoc extension. The
documentation source should be fairly readable without processing, but you can compile the documentation, you’ll
need to install Sphinx and numpydoc:

$ easy_install Sphinx
$ easy_install numpydoc

See the reStructuredText quick reference and the NumPy/SciPy documentation guide for an introduction to the docu-
mentation syntax.

11.1 Man page

The man-page source be.1.txt is writen in reStructuredText. The Makefile converts it to roff(7) format
using Docutils rst2man.

The man page should conform to Debian policy.

33

http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx.pocoo.org/
http://pypi.python.org/pypi/numpydoc
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
http://docutils.sourceforge.net/
http://www.debian.org/doc/debian-policy/ch-docs.html

bugs-everywhere Documentation, Release v2.0.0-rc2 (unknown)

34 Chapter 11. Producing this documentation

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

35

	Installing BE
	Distribution packages
	Dependencies
	Git repository
	Release tarballs

	Tutorial
	Introduction
	Installation
	Bugs
	Command-line interface

	Configuration
	Config file format and location
	Settings

	Email Interface
	Overview
	Architecture
	Creating bugs
	Commenting on bugs
	Controlling bugs
	Example emails
	Procmail rules
	Testing

	HTTP Interface
	Distributed Bugtracking
	Usage Cases
	Notes

	Power features
	Autocompletion
	XML-handling utilities

	Hacking BE
	Adding commands
	Adding user interfaces
	Testing
	Profiling

	Data Format
	Bugdir
	Bug
	Comment

	Dealing with spam
	If the offending commit is the last commit
	If the offending commit is not the last commit
	Warnings about changing history

	Producing this documentation
	Man page

	Indices and tables

